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Abstract 
 
The effect of boron toxicity on humans is comparable to that of table salt which is considered non-toxic. 
In agriculture, it is a micronutrient that is essential for the growth of plant; however, its concentration 
must remain below 1 mg/l before it becomes toxic to some plants. 
 
In 2009, the World Health Organization (WHO) revised its guideline level of boron in drinking water to 
2.4 mg/l. Seawater RO (SWRO) membrane manufacturers claim a boron rejection varying from 88% to 
95% at standard SWRO test conditions, while NaCl is rejected at rate greater than 99.5%. Relatively 
large concentrations of boron can still be present in the permeate despite its typically low feed 
concentration of 4 to 6 mg/l in seawater applications. 
 
Recent developments in thin-film nanocomposite (TFN) membranes have resulted in higher salt 
rejection (99.85%) and greater production capacity. These improvements are leveraged to enhance the 
product quality, to increase the plant production capacity, to lower plant footprint, or to reduce the 
plant’s energy consumption. Along the high salt rejection, TFN membranes also demonstrate a relatively 
high Boron rejection.   
        
A field pilot study conducted at San Pedro del Pinatar demonstrated that the TFN membrane 
consistently performed at a normalized boron rejection of 94%. The pilot system delivered a maximum 
of 1 ppm of permeate boron content at a maximum temperature of 26 ºC without any pH adjustment. 
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II. SAN PEDRO DEL PINATAR PILOT PLANT 
 
San Pedro del Pinatar 2 SWRO desalination plant located in Murcia, in the south east of Spain, has nine 
trains producing a total capacity of 65 MLD.  It was commissioned at the end of 2006 to provide 
additional potable water to Mancomunidad de los Canales del Taibilla which is the local governmental 
water authority. The source of the raw water is an open seawater intake. 
Adjacent to the main plant is a stand-alone pilot unit. 

 
Figure 1: San Pedro del Pinatar 2 Desalination Plant 

 

 
 
The pilot unit has the following design: 

- Raw feed water is treated by the main plant media filters before serving the pilot unit  
- Cartridge microfilter 
- Piston pump controlled with a variable frequency drive (VFD) serves as the high pressure pump 
- One 7-element pressure vessel with RO elements of 8-inches in diameter from one of the main 

plant racks.  
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Figure 2: Pilot Test Facility 
 

 
 

Figure 3: Pilot Test Pressure Vessel and Instrumentations 
 

 
 
Pilot test operators recorded the following measurements three times per day: 

1) Raw Feed: 
a. Conductivity [µS/cm] 
b. Temperature [ºC] 
c. pH 
d. SDI 

2) RO feed: 
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a. SDI 
b. Pressure 

3) Permeate: 
a. Conductivity [µS/cm] 
b. Pressure [bar] 
c. Flow rate [m3/h] 
d. pH 
e. Temperature [ºC] 

4) Concentrate: 
a. Conductivity [µS/cm] 
b. Pressure [bar] 
c. Flow rate [m3/h] 

 
In addition, RO feed and permeate samples were collected daily and sent out to their in-house laboratory 
for the analysis of the boron concentrations.  
 
 
III.  RESULTS AND DISCUSSIONS  
 

1) Test Operating Conditions 
 
Seven LG SW 440 SR elements with TFN membranes were loaded into the pilot system in September 
2014 under the following initial operating conditions: 

- 45% feed water recovery producing 3 m3/hr at system flux of 10.4 lmh 
- 26 deg C and a feed salinity of 39,080 ppm at pH 6.2 

 
Figure 4: RO Feed Water Conditions 
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Figure 4 shows the trends of the RO feed water for the duration of the pilot test. The feed conductivity 
varies within a relatively narrow range of 57,000 and 58,000 µS/cm while the pH averages about 6.7. 
The temperature gradually declines from 26 ºC (summer) to 15.5 ºC (winter). The RO feed water to the 
pilot test was not subjected to any pH adjustment/increase to improve the boron rejection performance 
of the SWRO membranes.  

 
Figure 5: Pilot Test Operating Conditions 

 

 
 
The pilot test was conducted under two distinct conditions (Figure 5): 

- From startup to October 20th: the system recovery was 44.7% and the production capacity was 3 
m3/hr. The associated system flux was 10.4 lmh 

- From October 20th to December 20th: the system ran at a higher system flux of 11.5 as the 
production capacity was increase to 3.3 m3/h. The recovery slightly increased to 45.3% 

 
2)  Results 

 
Figure 6 graphs the measured boron concentrations in the permeate and RO feed samples. The boron 
concentration in the feed slowly increased from 4.5 to 5.5 ppm. The permeate boron concentration 
remained at or below 1 ppm at high temperature conditions and without pH adjustment then slowly 
decreased to 0.6 ppm as the temperature approached 15 ºC.   
 
The change in operating conditions with an increase of the system flux from 10.4 to 11.5 lmh resulted in 
a slight drop in permeate boron concentration from 0.9 to 0.82 ppm.     
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Figure 6: Boron Concentrations 
 

 
 
Based on the pilot test system data, the element boron rejection was normalized to standard SWRO test 
conditions: 800 psi, 32,000 ppm NaCl, 5 ppm feed boron, 8% recovery, pH : 8 and  25 ºC. The results 
are shown in Figure 7 below.  The TFN membranes used in the pilot test have a constant boron rejection 
of 94%. This value is 1% greater than the specified value presented in the manufacturer data sheet of 
93%.   
 

Figure 7: Boron Concentrations 
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3) Temperature Correction Factor 

 
The effect of temperature on the permeate quality (TDS and Boron) was determined and verified. 
Temperature dependence of the membrane salt diffusion coefficient, B-value, follows the empirical 
equation [3]: 
 
TCF = e(K(1/298-1/T)) 
 
TCF: Temperature correction factor 
T: Feed water temperature (Kelvin) 
K: Activation Energy  
 
Figure 8 graphs the theoretical TCF that is used in LG NanoH2O’s Q+ projection software and compares 
it to the values determined experimentally from TDS and Boron data. The experimental results fit very 
closely to the theoretical model. Therefore, the model is validated. 
 

Figure 8: B-Value Temperature Correction Factor 
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IV. ECONOMICS: CASE STUDY 
 
The pilot test results demonstrate that 1-ppm permeate boron can be achieved at the plant maximum 
temperature of 26 ºC, reached during the test, without any pH adjustment and caustic dosing. The main 
plant is equipped with a caustic dosing system that can increase the pH of the feed water to improve the 
boron removal capability of the SWRO elements. Caustic dosing system can be used in the cases when 
the permeate boron concentration exceeds the limit of 1 ppm.  
 
Premise: Supposing the main plant at San Pedro del Pinatar II uses a standard 440-square foot TFC 
element performing at 8,250 gpd, 99.80% salt rejection, and 92% boron rejection. 
 
Q+ projections [4], with this standard element, show that a feed pH adjustment of at least 8 is required to 
achieve a permeate boron level of 1 and below when temperature exceeds 22ºC. According to 
www.seatemperature.org [5], the average seawater temperature in that region is equal or above 22ºC 
from the months of June to September (four months out of the year).  
 
Table 1 details the minimum caustic chemical cost for the San Pedro del Pinatar II plant to meet the 
permeate boron limit if operated with the standard TFC elements.     
 

Table 1: Caustic Cost Analysis 
 

Production Capacity 65 MLD 
Recovery 45% 
Raw Feed 144 MLD 

Caustic Dosing 
 from pH 6.7 to 8.0 

25 mg/l 

Daily Caustic Consumption 3,600 kg 
Caustic Cost $0.5/kg 

Daily Caustic Cost $1,800 
Annual Caustic Cost* $219,000 

*assuming 33% of the time (warm season, temperature < 22ºC ) 
 
In this case study, by using TFN elements in lieu of standard TFC, pH adjustment of the raw feed to 
achieve the permeate boron limit could be eliminated, thereby saving the plant a minimum of $219,000 
each year. 
 
 
V.  CONCLUSIONS  
 
The findings of the pilot test at San Pedro del Pinatar on TFN membranes are as follows: 

- 1 ppm permeate boron can be achieved at the highest tested temperature without any pH 
adjustment. 

- The TFN membrane consistently performs at a normalized boron rejection of 94%. 
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- Field data validates the Temperature Correction Factor model for the salt diffusion coefficient 
used in LG NanoH2O’s Q+ projection software. 
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